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LETTER TO THE EDITOR 
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Abstract. A mmplex system is often identified by the absence of a characteristic length, e.g. 
as in a fracol. A very large system subject to a fragmentation and/or aggregation dynamics 
passes through such complex configurations. We study statistically creation and maintenance 
of such configurations in space dimensions d = 1 to 5 and find that they are easily created 
(maintained) for small (large) d. An intermediate d such as d = 3 seems to be ideal for the 
creation and maintenance of complex systems. This has consequences in a statistical description 
of the univ-. 

An effort has been made to classify complex configurations which often arise from simple 
algorithms [I], as well as to define measures of Complexity valid for certain cases, for 
example, for a continuous stochastic signal x(f) [2], or for a hierarchical structure such as 
a tree [3]. As in [l-31 we use a variable, which we call diversity in  the following, for 
measuring the complexity of a system. Both a completely ordered configuration, such as 
that of a crystalline solid, and a completely disordered configuration, such as that of an 
ideal gas, are not really complex. However, the system passes through a very complex 
configuration in its transition from the former to the latter. The diversity first increases, 
then attains its maximum, when the system assumes the most complex configuration, and 
later it decreases again. The greater the diversity, the more complex the system is. 

The term complexity can be associated with a variety of properties of a system. In many 
situations, complexity is associated with the diversity of size scales. In fluid mechanics, 
and in many other physical phenomena, complex behaviour is associated with a spatial 
inhomogeneity, i.e. with a diversity in size scales. An individual fractal or a fractal 
distribution of clusters are complex systems with diversified size scales 141. In the present 
letter we shall consider only this concept of complexity, which covers a variety of situations 
of interest. 

The observed diversity of a system cannot easily be accounted for by the dynamical 
equation it satisfies. Many aspects of the production and maintenance of large diversity 
can be explained by a statistical approach, rather than by a microscopic approach. The 
present letter attempts such a description of the formation and existence of a complex 
configuration starting from a simple configuration. Specifically, we deal with the numerical 
simulation of stochastic fragmentation and growth dynamics on large lattices. If the lifetime 
of individual fragments of the system is too short, such a configuration will either quickly 
form a large single object (in the case of aggregation) or decay rapidly to a gas or cloud 
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state in which the only components are the building blocks (in the case of fragmentation). 
Both these final configurations are necessarily non-complex in nature. If, on the other hand, 
the stability of individual fragments is absolute, the complex system will rest indefinitely in 
an uninteresting configuration of minimal diversity. The interesting case is the one where 
there is a dynamical evolution, e.g. a configuration of large diversity is created from one 
of low diversity and survives for a long time and is eventually destroyed. We find that 
the probability of formation of a very complex configuration of clusters is exponentially 
reduced for a larger space dimension d for a fixed mass and the probability of survival of this 
configuration increases linearly with d ;  This indicates that d = 3 is perhaps optimal for the 
creation and maintenance of a complex system. As the universe is very complex, long-lived, 
and three-dimensional, this fact brings additional support to a statistical description of the 
clustering processes in the universe. The fractal distribution of the clusters of the universe 
and its fractal dimension has previously been explained by statistical arguments [5-71. 

The concept of diversity is fundamental in an increasing number of contexts in the 
scientific literature, in connection with biological [8] and evolutionary [9] problems, self- 
organization, randomness [lo], cellular automata [ll], fractals [4, 121, and non-equilibrium 
phenomena [13]. Recently, the concept of diversity of sizes [13-161 has been extensively 
studied for several dissipative processes and cellular automata which generate a distribution 
of clusters. Such studies [13-161 cover situations of interest in physics, chemistry, and 
biology. 

Diversity D ( t )  which gives the number of different sizes at time t and is defined as 

where n(s,  t )  is the number of fragments of size (mass) s at time f, O(x) = 1 if x > 0, and 
= 0 otherwise and the averaging () is over different experiments. As in [2], the diversity of 
(1) can be considered as an integral over a coarse-grained distribution. The present diversity 
is also similar to the diversity introduced in [3]. 

We consider two fragmentation dynamics with (i) consumption of mass and with (ii) 
constant mass in addition to an aggregation dynamics with (iii) increase of mass. These 
dynamics, described below, are sufficiently simple to allow extensive numerical simulations 
and statistical analyses, yet sufficiently complex to exhibit a wide variety of complicated 
patterns. 

(i) The particle at site i of an object S, of initial mass MO and average initial coordination 
qo. on a d-dimensional lattice is selected at random. If the coordination qi of i (i.e. the 
number of nearest neighbours of i) satisfies qi < qmox(- 2d), then the particle at site i is 
consumed with probability p .  Consumption of the particle at site i implies the decrease 
of the mass of S by one unit. Nothing happens if qi = qmox. However, each random 
selection of a site i increases the time by one unit. This dynamics can simulate a number 
of phenomena such as the attack of a matrix by a kind of corrosive rain, or a pathogenic 
element (plague) acting on a tissue (plantation), and other phenomena of interest in physics, 
chemistry, biology, and ecology 113, 141. 

(ii) The particle at site i of the oljject S of (i) is selected at random. If qj < qmox all 
bonds connecting the panicle i to its nearest neighbours are broken with probability p .  As 
a result a fragment of unit mass is generated and the initial mass is conserved. Nothing 
happens if qi = qnlar. Each random selection of a site i increases the time by one unit. 
The model (ii) can simulate fragmentation processes due, for example, to the mechanical, 
electrical, and chemical removal of bonds between sites of the object. 

(iii) A site i on a d-dimensional lattice is chosen and occupied at random. Then another 
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unoccupied site is chosen and occupied at random. Each random selection of a site i 
increases both the time and the mass by one unit. In this case MO and 90 refer to the final 
mass and average coordination, when all sites are occupied. This model can simulate many 
aggregation processes such as deposition of particles in condensed matter physics, accretion 
in biology, ecology, or astrophysics. 

With dynamics (i) and (ii) we performed numerical simulation employing massive 
Euclidean objects with initial mass MO as large as lo7 for d varying from 1 to 5 and 
p varying from 0 to 1, as well as fractal objects with deterministic stcuctnres (Sierpinski 
carpets) and random porous structures (two-dimensional percolation clusters) with MO up 
to 3.2 x 10'. With dynamics (iii) we considered aggregation on lattice of size up to lo'. 
In each case an average over ten similar experiments were performed. These numerical 
simulations are unique at the present time considering the generality of the procedure and 
the very large objects employed. 

In all three dynamics the system necessarily passes through the most complex 
configuration when diversity D ( t )  'attains its maximum D,,,. The distribution of the 
fragments at the maximum of diversity for both the aggregation and fragmentation dynamics 
exhibit the fractal property or the complex nature with no preferred characteristic length 
[4]. The fractal nature of the cluster distribution is manifested through the well established 
scaling relation at the maximum of diversity [4, 12, 13, 171 

n(s) - s-r (2) 

where n(s) is the number of fragments of size s and 5 is a critical exponent. 
One of the most conspicuous findings of recent studies of cluster distribution [13-161 is 

the existence of the robust scaling relation Om,, - NAL: between the maximum of diversity 
Dma and the maximum of the number of fragments N , , ,  [13]. One also has the scaling 
relations D,, - p(d)(Mo/qo)'/2 and N,,, - g(d)(Mo/qo) [13], where p(d) and g(d) are 
functions of the dimension d of space under consideration. 

In order to quantify the production of diversity in different space dimensions from a 
certain fragmentation dynamics we consider the ratio 

p(d) = Di,,/(Mo/qo). (3) 

The function p(d) provides a good measure of the intrinsic capacity of a system to generate 
diversity independent of its initial mass and coordination in a space of dimension d. The 
maintenance of diversity is quantified by the ratio 

where T is the time when diversity becomes unity. Here fi is the average diversity and E is 
essentially a normalized time-averaged value for D(r ) .  If E is large, D ( t )  maintains a value 
close to D,., for a long period of time; this means that the complex configuration survives 
for a long interval of time within the total 'life' T. For the same initial objects and for the 
same value of p ,  dynamics (i) and (ii) generate the same value for the ratios p and E .  

Figure 1 shows the exponential decay of the ratio p(d) as d increases from 1 to 5 for 
models (i) and (ii). This plot refers to numerical simulation with both fractal and compact 
objects for p = 0.2 (0), 0.5 (O), and 0.8 (0). In the plots the data for the largest objects 
are exhibited in each case. They are L = 70000 for d = I ,  L = 1000 for d = 2, L = 100 
for d = 3, L = 40 for d = 4, and L = 25 for d = 5. In addition, for d = 2, the symbols 
0, A and D. respectively, refer to simulations on Sierpinski carpets of length L = 2187 
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Figure 1. The ratio p(d) versus d for fragmentation models (i) and (ii) with p = 0.2 (U), 0.5 
(0). and 0.8 (0) in space dimensions d = 1 to 5. In addition ford =2 there are three more 
points: Sierpinski carpet of size L = 2187 (MO = 2097 192) for p = 1 (V) and p = O(A), and 
percolation duster on lauice of L = 2001, for p = I(D). The full line is the fit given by (5). 
For details of the objects employed see text. 

(MO = 2097 152) for p = 1 (V) and p = 0 (A), and for percolation cluster on a lattice of 
length L = 2001, for p = 1 (D). The data in figure' 1 can be fitted to 

p(d) = 4.3 exp[-(0.67 5 0.05)dl. (5) 
In figure 2 we plot D:ax /MO as a function of d for model (iii). In this aggregation model, 

unlike as in the fragmentation models considered in figure 1, since we are not involved with 
different geometries for the same value of d, the factor qo is omitted. In this case the lengths 
of lattices are L = 70000 (d = 1). L = loo0 (d = 2), L = 100 (d = 3) ,  L = 40 (d = 4) 
and L = 25(d = 5). The data in this figure can be fitted to 

D:,,/Mo = 2.5 exp[-(1.07 f 0.0S)dI. (6) 
From figures 1 and 2 we find that a large diversity is easily formed for small d 

and qo and large MO. This result is reasonable, although not obvious, since to generate 
many disconnected fragments or clusters from a single piece of matter one needs to cut 
progressively the (chemical) bonds that maintain matter concentrated over a small number 
of large clusters. These operations are more successful for small d because the number of 
bonds per site to be cut diminishes as d and qo decreases. Also, it seems quite reasonable 
to form large diversity for large objects. 

In figure 3 we plot the ratio 6/d versus MO for models (i) and (ii). We find the following 
best fit in this case: 

c / d  = 0.61M~0.23. 0 

sld  = 480Mc0.M. (8) 

For model (iii) (not shown in figure 3) we find 

In figure 3 we have three decades  of^ mass scale with MO varying from lo4 to 10'. The 
larger the ratio E ,  the higher is the stability of the complex configuration. Recalling that 
Dmar - (Mo/qo)'/z [13]; it follows,from (5) and (6) that, for a fixed qo and d, the larger 
the mass MO, the more complex the system is. Consequently, from (7) and (8), we find 
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Figure 2. The ratio D ~ , I M o  versus d for aggregation model (iii). The full line is the fir given 
by (6). For derails of the objects employed see the rext. 
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Figurc 3. The ratio eld versus MO for models (i) and (ii) (. : d = I; x : d = 2; U : d = 3; 
A : d = 4; V : d = 5 ). The full line refers lo the fit given by (7). 

that the more complex the system is, the more intense are the fluctuations that threaten its 
stability. Also, for a fixed MO, stability increases linearly with d. This seems plausible, 
as the stability of a complex configuration against the fluctuation or the noise is provided 
by the average number of bonds per site, which increases with d. The same mechanism 
which creates efficiently a large diversity in smaller dimension, is also responsible for the 
quick destruction of the large diversity. There is a competition between stabilization through 
communication and instability through noise. The outcome of this competition determines 
the threshold of stability. In space of lower dimension a large diversity is easily generated 
but it is also quickly destroyed. This is quite reasonable, as to reduce a given diversity 
one needs to cut progressively the bonds between constituents of clusters, which is more 
efficiently performed in space of lower dimensionality. 

The present study has some consequence in a possible statistical description of the 
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universe. Usually, the evolution of the universe is described by quantum mechanics and 
cosmology [IS]. However, certain observed propeaies about clustering in the universe, such 
as the observed fractal dimension (-1.2) [5-7] can be obtained in a stochastic statistical 
description. The same is true about the observed distribution of clusters of galaxies in the 
universe given by (2) with 5 = 1.9 [5-71. The exponent r = 1.9 seems to be robust and 
observed in previous studies of fragmentation [13, 151 in three dimensions independent of 
the dynamics. Also, a remarkable charkteristic of the universe is its capacity to generate a 
diversity of sizes from the microscale of elementary particles to the megascale of galaxies 
and clusters of galaxies in cosmology. As diversity in the three-dimensional universe is 
large and long-lived, the present study provides further evidence in favour of a statistical 
mscription of the clustering phenomena in the universe. This indicates that a statistical 
description may have a major role in interpreting the production and maintenance of diversity 
in the universe starting from a hot gaseous state right after the big bang. 

In conclusion, from extensive numerical study of fragmentation and aggregation 
dynamics on large lattices we find that for fixed MO and qo the creation of diversity is 
attenuated exponentially for large d. The stability of the diversity increases linearly with 
d indicating that d = 3 is possibly optimal for the creation and maintenance of complex 
systems. 

This work is supported in part by the Conselho Nacional de Desenvolvimento-Cientffico e 
Tecnoldgico and Financiadora de Estudos e Projetos of Brazil. 
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